Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression.

نویسندگان

  • Justin M Drake
  • Nicholas A Graham
  • Tanya Stoyanova
  • Amir Sedghi
  • Andrew S Goldstein
  • Houjian Cai
  • Daniel A Smith
  • Hong Zhang
  • Evangelia Komisopoulou
  • Jiaoti Huang
  • Thomas G Graeber
  • Owen N Witte
چکیده

Dominant mutations or DNA amplification of tyrosine kinases are rare among the oncogenic alterations implicated in prostate cancer. We demonstrate that castration-resistant prostate cancer (CRPC) in men exhibits increased tyrosine phosphorylation, raising the question of whether enhanced tyrosine kinase activity is observed in prostate cancer in the absence of specific tyrosine kinase mutation or DNA amplification. We generated a mouse model of prostate cancer progression using commonly perturbed non-tyrosine kinase oncogenes and pathways and detected a significant up-regulation of tyrosine phosphorylation at the carcinoma stage. Phosphotyrosine peptide enrichment and quantitative mass spectrometry identified oncogene-specific tyrosine kinase signatures, including activation of EGFR, ephrin type-A receptor 2 (EPHA2), and JAK2. Kinase:substrate relationship analysis of the phosphopeptides also revealed ABL1 and SRC tyrosine kinase activation. The observation of elevated tyrosine kinase signaling in advanced prostate cancer and identification of specific tyrosine kinase pathways from genetically defined tumor models point to unique therapeutic approaches using tyrosine kinase inhibitors for advanced prostate cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene amplifications associated with the development of hormone-resistant prostate cancer.

PURPOSE Hormone resistance remains a significant clinical problem in prostate cancer with few therapeutic options. Research into mechanisms of hormone resistance is essential. EXPERIMENTAL DESIGN We analyzed 38 paired (prehormone/posthormone resistance) prostate cancer samples using the Vysis GenoSensor. Archival microdissected tumor DNA was extracted, amplified, labeled, and hybridized to Am...

متن کامل

Small Molecule Therapeutics The Tyrphostin NT157 Suppresses Insulin Receptor Substrates and Augments Therapeutic Response of Prostate Cancer

Insulin-like growth factor (IGF) signaling is associated with castrate-resistant prostate cancer (CRPC) progression. Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from IGF1 receptor (IGF1R), insulin receptor, and other oncoproteins. This study demonstrates that IRS1/2 expression is increased in prostate cancer, and persists in CRPC. Furthermore, this...

متن کامل

Targeting Src-mediated Tyr216 phosphorylation and activation of GSK-3 in prostate cancer cells inhibit prostate cancer progression in vitro and in vivo

Recent studies suggest a positive correlation between glycogen synthase kinase-3 (GSK-3) activation and tumor growth. Currently, it is unclear how both Akt that inhibits GSK-3 and active GSK-3 are maintained concurrently in tumor cells. We investigated the role of GSK-3 and the existence of an Akt-resistant pathway for GSK-3 activation in prostate cancer cells. Our data show that Src, a non-rec...

متن کامل

The tyrphostin NT157 suppresses insulin receptor substrates and augments therapeutic response of prostate cancer.

Insulin-like growth factor (IGF) signaling is associated with castrate-resistant prostate cancer (CRPC) progression. Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from IGF1 receptor (IGF1R), insulin receptor, and other oncoproteins. This study demonstrates that IRS1/2 expression is increased in prostate cancer, and persists in CRPC. Furthermore, this...

متن کامل

Targeting fibroblast growth factor pathways in prostate cancer.

Advanced prostate cancer carries a poor prognosis and novel therapies are needed. Research has focused on identifying mechanisms that promote angiogenesis and cellular proliferation during prostate cancer progression from the primary tumor to bone-the principal site of prostate cancer metastases. One candidate pathway is the fibroblast growth factor (FGF) axis. Aberrant expression of FGF ligand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 5  شماره 

صفحات  -

تاریخ انتشار 2012